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Some recent studies have considered the stability of unbounded rapid granular shear
flow, with the sole mechanism for stress generation being instantaneous inelastic
collisions between grains. This paper extends these studies by presenting a linear
stability analysis in which stress generation due to grain friction is also accounted
for. This is accomplished by using the ‘frictional–kinetic’ model, which integrates
in a simple manner the stress arising from the two mechanisms. Solution of the
linearized equations of motion is obtained by allowing the wavenumber vector of
the disturbances to rotate as a function of time. As in the case of a purely kinetic
stress, it is found that the flow is stable to non-layering disturbances. Disturbances in
the form of layering modes may lead to instability, depending on the solids fraction
and material parameters. Instability is absent altogether if the balance of fluctua-
tional energy is not considered or if the material is assumed to be incompressible.
Friction may stabilize or destabilize the flow, depending on the inelasticity of grain
collisions and the effective roughness of the medium. When a purely frictional stress
is considered, it is found that the system is always neutrally stable. Even if the flow
is asymptotically stable, there may be significant transient growth of disturbances
due to the non-normality of the associated linear operator. The initial transient
growth rate, as well as the temporal maximum of transient growth is enhanced by
friction.

1. Introduction
In recent years, the stability of the shear flow of granular materials has received

considerable attention (Mello, Diamond & Levine 1991; Savage 1992b; Babić 1993;
McNamara 1993; Schmid & Kytömaa 1994; Wang, Jackson & Sundaresan 1996). The
motivation for the stability analyses arose, at least partly, from the dynamic simulation
studies of Hopkins & Louge (1991) and Savage (1992a) (see also Goldhirsch, Tan &
Zanetti 1993) in which inhomogeneities in the arrangement of particles were observed.
Hopkins & Louge (1991) reported persistent clusters of particles during the shearing
of an assembly of uniform smooth circular inelastic disks in the absence of gravity. The
size and strength of the inhomogeneities in particle distribution were found to depend
on the mean volume fraction of particles and the inelasticity of particle collisions.
Savage (1992a) observed that when an assembly of particles was sheared between
rough walls in the absence of gravity, turbulent-like flow occurred in some regions.
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Notably, the power spectrum of the fluctuations in the stress had the form of 1/f
noise. He suggested that these fluctuations were analogous to turbulent fluctuations
in fluids. Stress fluctuations of this nature have been observed experimentally by
Behringer & Baxter (1991) in the flow of granular materials through a hopper and by
Miller, O’Hern & Behringer (1996) in an annular shear cell. The latter have reported
the interesting observation that the power spectrum of the stress fluctuations, suitably
scaled, is independent of the shear rate.

The appearance of concentration inhomogeneities and fluctuations in the stress
has significant bearing on the development of constitutive models for the rheology of
granular media, for all available models (understandably) assume uniformity in the
distribution of particles and smoothly varying fields. An important question from the
point of view of constitutive modelling is whether the observed inhomogeneities and
fluctuations can be explained within the continuum framework. If not, constitutive
models for granular rheology must incorporate in some manner the inhomogeneous
distribution of particles.

Savage (1992b) considered the linear stability of unbounded uniform shear flow
to two-dimensional disturbances. Since the velocity in the base state is a function
of position, the classical normal mode form with a constant wave vector is not a
solution of the linearized disturbance equations. Savage sought a solution of the form
first introduced by Thomson (1887), in which the wave vector is allowed to rotate
by the mean shear (following Wang et al. 1996, we hereafter refer to this form as
‘Kelvin modes’). This yields a set of linear differential equations whose coefficients are
functions of time. To further simplify the analysis, Savage considered only the initial
growth rate of disturbances, which involved obtaining the eigenvalues of the linearized
equations with coefficients frozen at t = 0. Babić (1993) expanded the analysis of
Savage by considering two-dimensional disturbances for an array of disks and three-
dimensional disturbances for spheres in uniform shear flow. In general, Savage and
Babić observed that at a given density, the initial growth rate was a maximum at some
large wavelength; this maximum growth rate increased with the mean density until
some intermediate value, beyond which it decreased. Furthermore, the flow tended to
be more ‘unstable’ as the inelasticity of grain collisions increased. Babić also noted
that this instability would not be observed in the dynamic simulations with small
periodic cells, as they preclude the possibility of unstable disturbances with sufficiently
small wavenumber (this is not quite correct, as elaborated in the concluding section
of this paper).

The conclusions on the stability of shear flow in the studies of Savage and Babić
are based on the initial growth rate of disturbances. However, initial growth of
disturbances does not necessarily imply instability, as the growth rates are based on
the eigenvalues of the linearized equations with coefficients frozen at t = 0, and are
therefore relevant only for small t.

More recently, Schmid & Kytömaa (1994) considered the complete differential
equations for the disturbances, without freezing the coefficients. They computed
the growth function G(t), which is the largest possible amplification at time t over
all initial disturbances of unit norm. They observed that for a certain range of the
wavenumber vector, G(t) can increase with t and attain a large value. However,
for non-zero values of the streamwise wavenumber (kx 6= 0), the individual Fourier
modes and the growth function G(t) always decay as t → ∞. They then concluded
that the base state of uniform shear is asymptotically stable, but the transient growth
of disturbances can trigger instabilities associated with nonlinearities in the governing
equations.
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All the considerations in the previous two paragraphs were clearly elucidated in
the recent paper of Wang et al. (1996). More importantly, they pointed out that
the conclusion of Schmid & Kytömaa that unbounded uniform shear flow is always
linearly stable is incorrect, as they demonstrated the existence of Kelvin modes with
kx = 0 which are unstable. Wang et al. refer to these as ‘layering modes’, a definition
we have retained in this work. They also noted that the transient growth reported by
Schmid & Kytömaa is not a true instability in the sense of Lyapunov, as the initial
perturbations may be scaled so that the perturbed state is always within any specified
neighbourhood of the base state.

An important point to note is that all the investigations on the stability of
granular shear flow referred to above have used one of the kinetic-theory-based
models for the rheology, in which particles interact through instantaneous binary
collisions. Savage (1992b), Babić (1993), Schmid & Kytömaa (1994) and Wang et al.
(1996) used the model of Lun et al. (1984) and McNamara (1993) used the model
of Jenkins & Richman (1985). While the physical picture of stress generation from
instantaneous collisions between particles is expected to be valid at low densities
and high shear rates, the stress arising from frictional forces due to abiding grain
contacts will be important at higher densities. The densities for which the frictional
stress is significant, and perhaps dominant, can be realized even under gravitational
compaction. It is therefore important to extend the analysis of stability of granular
shear flow to include the effect of friction.

In this work, we study the linear stability of unbounded uniform shear flow
of a granular material in the absence of external body forces to two-dimensional
disturbances. We use the ‘frictional–kinetic’ model of Johnson & Jackson (1987) to
describe the stress in the granular medium. This model integrates, in a simple manner,
the generation of stress due to particle streaming and collisions and that due to grain
friction. We use the critical state model (Jackson 1983; Prakash & Rao 1988) for the
frictional contribution to the stress and the model of Lun et al. (1984) for the kinetic
stress. The linear stability of the base state of uniform shear flow is determined by
seeking solutions of the linearized equations in the form of Kelvin modes. We consider
asymptotic stability as well as transient behaviour of the linearized operator in the
manner of Schmid & Kytömaa (1994) for the complete equations with time-dependent
coefficients. We show that unbounded granular shear flow is neutrally stable if the
stress is purely frictional. When combined with the kinetic stress, however, friction
may stabilize or destabilize the flow when disturbances are in the form of layering
modes (kx = 0, ky 6= 0), depending on the inelasticity of particle collisions and the
roughness of the material; disturbances in the form of non-layering modes (kx 6= 0)
always decay asymptotically, as in the purely kinetic case. Furthermore, we show that
friction has a pronounced effect on the transient growth of disturbances. The maxima
in the norms of disturbances are subsequently larger than those corresponding to
the purely kinetic case. The disturbance that results in the largest transient growth is
found to be the one with kx = 0 and ky = 0.

2. Governing equations
The continuum balances for mass, momentum and fluctuational energy may be

written as (Johnson & Jackson 1987)

ρp
Dν

Dt̃
= −ρpν(∇̃ · ũ),
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ρpν
Dũ

Dt̃
= ρpνg̃− ∇̃ · (Σ̃k + Σ̃f ),

3
2
ρpν

DT̃

Dt̃
= −∇̃q̃ − Σ̃k : ∇̃ũ− D̃,

where ν is the particle volume fraction, ρp is the intrinsic density of the particles,

ũ is the bulk velocity, g̃ is the acceleration due to gravity and T̃ denotes the grain
temperature; q̃ is the flux of fluctuational, or ‘pseudo-thermal’, energy and D̃ is the
collisional rate of energy dissipation per unit volume. The last of the above equations,
which is a balance of fluctuational energy, is required as the transport properties
of the granular medium in the kinetic model depend on the grain temperature. The
momentum equation reflects the assumption that the total stress in the granular
continuum is the sum of collisional–kinetic Σ̃k (henceforth referred to simply as
the kinetic stress) and frictional, Σ̃f , contributions (both defined in the compressive
sense), with each calculated independently from constitutive expressions derived for
the limits of purely collisional and purely frictional interactions, respectively. Implicit
in the derivation of the fluctuational energy balance is the assumption that frictional
work generates true thermal energy (heat) and does not contribute to the generation
of fluctuational energy (Johnson & Jackson 1987).

Using the particle diameter (dp) and inverse of the shear rate (Γ̃
−1

) as the natural
length and time scales, respectively, the following non-dimensional variables are
introduced:

(x, y) =
1

dp
(x̃, ỹ), t = t̃ Γ̃ , (u, v) =

1

dpΓ̃
(ũ, ṽ), T =

T̃

d2
pΓ̃

2
,

Σk =
Σ̃k

ρpd2
pΓ̃

2
, Σf =

Σ̃f

ρpd2
pΓ̃

2
, q =

q̃

ρpd3
pΓ̃

3
, D =

D̃
ρpd2

pΓ̃
3
.

The dimensionless balance equations, in the absence of gravity, reduce to the
following form:

Dν

Dt
= −ν(∇ · u), (2.1)

ν
Du

Dt
= −∇ · (Σk + Σf ), (2.2)

3
2
ν

DT

Dt
= −∇q − Σk :∇u−D. (2.3)

2.1. Constitutive equations for the kinetic model

We adopt a slightly modified form of the constitutive expressions of Lun et al. (1984),
as detailed in Johnson & Jackson (1987), for Σk, q and D:

Σk =
(
f1(ν)T − f3(ν)T

1/2∇ · u
)
I − 2f2(ν)T

1/2S , (2.4)

q = −f4(ν)T
1/2∇T − f4h(ν)T

3/2∇ν, (2.5)

D = f5(ν)T
3/2, (2.6)

where

S = 1
2
(∇u+ ∇uT )− 1

3
(∇ · u)I ,

and I is the identity tensor. The non-dimensional functions f1–f5 are listed in table 1.
These functions depend on the equilibrium radial distribution function g(ν), for which
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f1(ν) ν(1 + 4ηνg(ν))

f2(ν)
(2 + α)

3π1/2

(
5π

96η(2− η)

(
1 + 8

5
ηνg(ν)

)(
1
g(ν)

+ 8
5
η(3η − 2)ν

)
+ 8

5
ην2g(ν)

)
f3(ν) 8

3π1/2 ην
2g(ν)

f4(ν) 25π1/2

16η(41− 33η)

(
1 + 12

5
ηνg(ν)

)(
1
g(ν)

+ 12
5
η2(4η − 3)ν

)
+ 4
π1/2 ην

2g(ν)

f4h(ν)
25π1/2

16η(41− 33η)

(
1

νg(ν)
+ 12

5
η

)
12
5
η(2η − 1)(η − 1) d

dν
(ν2g(ν))

f5(ν) 48
π1/2 η(1− η)ν2g(ν)

η 1
2

(1 + ep)

Table 1. Non-dimensional functions

Parameters Values

F̃r 0.05 kg m−1 s−2

νmin 0.50
νmax 0.65
N 5
P 2
n 1.03
φ 28.5◦

ρp 2900 kg m−3

dp 1 mm
α 1.6

Table 2. Material properties

we use the form

g(ν) =
1

1− (ν/νmax)1/3
. (2.7)

This form ensures that g →∞ when ν → νmax and hence constrains the solids volume
fraction to remain less than the maximum-packing value νmax. This form has been
used in earlier studies on granular flow (e.g. Johnson & Jackson 1987; Nott & Jackson
1992). The consequence of assuming an alternative form for g(ν) is discussed in § 6.
The parameter α appearing in the expression for f2(ν) reflects the anisotropy of the
pair distribution function – its value is given in table 2.

2.2. Constitutive equations for the frictional stresses

Constitutive theories for the frictional stress are empirical in nature and do not
depend on quantities directly related to physical characteristics of the grains such as
the particle size, or surface roughness. In this work, we use the critical state model
for the frictional stress. We give only a brief description of its features and refer
to Jackson (1983) for a detailed description of the physical basis of the theory. The
model is described for two-dimensional flow, as that is the concern of this study.

The model is conveniently described in terms of the Sokolovski stress variables σ,
τ, and γ, defined as

σ = 1
2
(σ1 + σ2), τ = 1

2
(σ1 − σ2),

where σ1 and σ2 are the major and minor principal frictional stresses, respectively, and
γ is the angle between the x-axis and the direction of σ1, measured in the clockwise
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Figure 1. Yield locus in the (σ, τ)-plane.

sense from the x-axis. In terms of the Sokolovski variables, the frictional stress tensor
can be written as

Σf =

(
σ + τ cos(2γ) −τ sin(2γ)
−τ sin(2γ) σ − τ cos(2γ)

)
.

The constitutive model consists of three components: the yield condition, the
condition of coaxiality and the flow rule.

The yield condition for isotropic materials states that if the material deforms, the
state of stress is determined by a functional relation of the form

τ = τ(σ, ν). (2.8)

The above equation incorporates the rigid–perfectly plastic approximation which
assumes that the material is rigid if τ is less than the threshold τ(σ, ν), and perfectly
plastic in the sense that τ cannot be forced above this threshold. The yield condition
may be represented in the (σ, τ)-plane as a set of yield loci, one for each value of ν.
For a given density ν1, the yield locus τ(σ, ν1) is convex and is of the general shape
shown in figure 1. Points on the yield locus to the left of P (such as A) correspond
to dilation, and those to the right of P (such as B) correspond to compaction. Points
such as P (where ∂τ/∂σ = 0) correspond to isochoric states, and are known as critical
states. There is one critical state for every ν, and the locus of critical states for all ν
is the critical state line.

The co-axiality condition requires that the principal directions of Σf and the strain-
rate tensor to be aligned, with the major principal stress aligned with the minor
principal rate of deformation. If u and v are the Cartesian components of velocity,
this condition leads to

cos(2γ)

(
∂u

∂y
+
∂v

∂x

)
= sin(2γ)

(
∂v

∂y
− ∂u

∂x

)
. (2.9)

The flow rule relates the stress to the rate of deformation, and is expressed as

cos(2γ)

(
∂u

∂x
+
∂v

∂y

)
=
∂τ

∂σ

(
∂v

∂y
− ∂u

∂x

)
. (2.10)

The flow rule holds that the material will consolidate or dilate according to whether
(σ, τ) lies to the right or left of the critical state line, respectively.
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The functional form of τ is taken as (Prakash & Rao 1988)

τ = σc(ν)
(
nα− (n− 1)αn/(n−1)

)
sinφ (2.11)

where σc(ν) is the mean stress at the critical state for the solids fraction ν, α = σ/σc(ν)
and n is a constant in the range 1 < n < 1/ sinφ. The closer n is to unity, the steeper is
the compaction branch PBC of the yield locus (figure 1). Jyotsna (1993) fitted a value
of 1.03 for n from data on Leighton-Buzzard sand, which we retain in this study. At
critical state, the above equation reduces to the well-known Coulomb relationship,

τc = σc sinφ,

where φ is the ‘angle of internal friction’, a quantity measured in slow plane shearing
experiments which characterizes the roughness of the granular medium. Experimental
observations on sand (Atkinson & Bransby 1982, p. 240) indicate that σc increases
rapidly with bulk density. While data for densities close to maximum packing are not
available, it is reasonable to assume that σc diverges as νmax is approached. A simple
algebraic representation of this behaviour is

σc(ν) = Fr
(ν − νmin)P
(νmax − ν)N

(ν > νmin)

= 0 (ν 6 νmin)

 , (2.12)

where Fr = F̃r/ρpd
2
pΓ̃

2
, N, and P are constants. This model asserts that frictional

interactions do not occur at values of ν 6 νmin for which randomly distributed par-
ticles are not in contact. We assume that the critical state model remains valid for
more rapid deformations in which collisional interactions also contribute to the total

stress. The values of F̃r, φ, νmin, νmax,N, P, and other parameters are listed in table 2.
These were used by Johnson, Nott & Jackson (1990) and Nott & Jackson (1992) for
a medium comprising glass beads of 1 mm diameter. We retain the value of n cor-
responding to sand (see above) as data for glass beads are not available. The results
presented in this work are for the parameter set listed in table 2, with the exception of
figures 14 and 15 where the sensitivity of the stability results to the angle of internal
friction φ is explored.

3. Linear stability analysis
We consider the linear stability of unbounded granular shear flow at constant shear

rate Γ̃ and uniform solids fraction ν0. Flow is in the x-direction and the velocity
gradient is in the y-direction. The solution for the base state is

u0(y) = y, T 0(ν0) = f2(ν
0)/f5(ν

0).

The co-axiality condition (2.9) implies that γ0 = π/4. Since the deformation is
isochoric, the material is always at critical state (i.e. ∂τ/∂σ = 0). Therefore the flow
rule (2.10) is trivially satisfied.

We look for two-dimensional disturbances of the above base state, such that

u = u0(y) + u′(x, y, t), v = v′(x, y, t),

ν = ν0 + ν ′(x, y, t), T = T 0 + T ′(x, y, t),

Σk = Σ0
k + Σ′k(x, y, t), Σf = Σ0

f + Σ′f (x, y, t),

q = q0 + q′(x, y, t), D = D0 +D′(x, y, t),
γ = γ0 + γ′(x, y, t),
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where primed quantities stand for infinitesimal perturbations. The perturbation of
the frictional stress tensor is derived in the next subsection. We have restricted this
study to two-dimensional disturbances as there are insufficient data to formulate with
confidence a three-dimensional yield surface.

3.1. Perturbation of frictional stress tensor, Σ′f
In terms of disturbance variables, the linearized coaxiality condition may be written
as

γ′ =
1

2

(
∂u′

∂x
− ∂v′

∂y

)/(
du0

dy

)
, (3.1)

and the linearized flow rule as

∂τ

∂σ
=

(
∂v′

∂y
+
∂u′

∂x

)/(
du0

dy

)
. (3.2)

The Taylor series expansion of ∂τ/∂σ about the critical state yields

∂τ

∂σ
= τ0

σσσ
′ + τ0

σνν
′, (3.3)

where the subscripts σ and ν indicate partial derivatives and the superscript 0 indicates
quantities evaluated at base-state conditions. Combining (3.2) and (3.3), the perturbed
mean stress becomes

σ′ =
1

τ0
σσ

[
1(

du0/dy
) (∂v′

∂y
+
∂u′

∂x

)
− τ0

σνν
′

]
. (3.4)

The perturbation in the shear stress may be obtained from the Taylor series expansion
of τ(σ, ν) about the base state (σ0, τ0, ν0),

τ′ =

(
∂τ

∂ν

)0

ν ′ = τ0
νν
′. (3.5)

In terms of (σ′, τ′, γ′), the perturbed frictional stress tensor may be written as

Σ′f =

(
σ′ − 2γ′τ0 −τ′
−τ′ σ′ + 2γ′τ0

)
. (3.6)

Using (3.1), (3.4), and (3.5), Σ′f can be expressed in terms of the primary disturbance
variables (ν ′, u′, v′).

3.2. Kelvin modes and the linearized evolution equations

Linearizing the governing equations (2.1)–(2.3) about the steady base state, we obtain
a set of linear equations for the infinitesimal disturbance quantities (ν ′, u′, v′, T ′).
Since the coefficients of certain terms of the linearized equations depend on the spatial
variable y explicitly, we cannot seek solutions in the form of simple plane waves.
However, following Moffatt (1967) (and more recently, Savage 1992b, Babić 1993 and
Schmid & Kytömaa 1994), we seek solutions in the form of Kelvin modes

X ′(x, y, t) = X (t) exp [ik(t) · x] , (3.7)

with

X ′ = (ν ′, u′, v′, T ′)T , x = [x, y]T , k(t) =
[
kx0, ky0 − tkx0

]
.

Here kx0 and ky0 are the components of the wavenumber vector at t = 0. In this
model, the disturbances interact with the mean flow in the sense that the wavenumber
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vector k(t) is rotated by the mean shear flow. Note that the x-component of k(t)
remains constant but the y-component varies linearly with time leading to wavefronts
becoming progressively parallel to the x-axis as time increases.

Substituting the above form of Fourier modes into the linearized equations, we get
a set of equations for the evolution of the disturbance amplitudes ν̂, û, v̂, and T̂ ,
which may be written as

dX

dt
= A(t)X , with X = (ν̂, û, v̂, T̂ )T . (3.8)

The time-dependent matrix, A(t), can be decomposed as A(t) = Ak(t) + Af(t), where
Ak(t) has entries originating from the kinetic model and Af(t) arises from the frictional
stress in the momentum balance. The elements of Ak(t) and Af(t) are listed in
Appendix A.

For the problem under consideration, A(t) has a quadratic form in time,

A(t) = A0 + A1t+ A2t
2, (3.9)

where A0, A1 and A2 are constant matrices. The elements of the matrix A0 are the
same as those of A(t) with kx = kx0 and ky = ky0.

4. Asymptotic stability
In this section we present results for the asymptotic stability of (3.8). The inclusion

of friction introduces an additional parameter in the governing equations, Fr =

F̃r/ρpd
2
pΓ̃

2
, the non-dimensional friction coefficient. The inverse of Fr is the equivalent

of the Reynolds number for quasi-static frictional flows; it is the ratio of inertia and
frictional driving forces. However, it is fundamentally different from the Reynolds
number for viscous flows in that the frictional stress is rate independent. It is also
noteworthy that, when the stress is purely kinetic, there is no Reynolds number
occurring in the governing equations, as was pointed out by Wang et al. (1996).
This is due to the lack of a thermodynamic temperature in granular flows – all the
transport properties are proportional to the grain temperature T , which in turn is
‘driven’ by the imposed flow.

To study the effect of friction on stability, the analysis must be performed for a
wide range of Fr. Since we wished to also explore the effect of the solids fraction
ν0, the stability analysis was performed for only four representative values of Fr:
3.8× 10−5, 9.5× 10−4, 1.52× 10−2 and 0. For the material parameters given in table
2, the first three of the above values of Fr correspond to shear rates of 674, 135 and
34 s−1, respectively, and the last represents the case of a purely kinetic stress. The
reason for choosing these values of the shear rate is that they fall within the range for
which stress measurements were made by Savage & Sayed (1984). From their data,
it appears that the smallest of the above shear rates lies in the quasi-static (rate-
independent) regime, and the largest in the ‘grain-inertia’ regime where the kinetic
stress dominates.

Schmid & Kytömaa (1994) determined the evolution of infinitesimal disturbances
in the limit of large time by arguing that A2t

2 determines the asymptotic behaviour
of (3.8) since it is the dominant part of A(t). We show below that this assumption
leads to an incorrect result and proceed to derive the correct asymptotic behaviour.

Let us for simplicity consider just the linearized y-momentum balance in (3.8),

dv̂

dt
= a31ν̂ + a32û+ a33v̂ + a34T̂ . (4.1)
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For large time, the variation of the coefficients is such that a33 ∼ t2 while the other
three vary as t (see Appendix A). Schmid & Kytömaa drop the other terms on
the right-hand side of (4.1) in favour of the third, the implicit (though unstated)
assumption being that the asymptotic dominant balance (Bender & Orszag 1984,
p. 83) is between dv̂/dt and a33v̂. Using the same argument for the x-momentum and
energy balances, they derived the asymptotic variation of the disturbance amplitudes
as

û ∼ exp(−Cut3), v̂ ∼ exp(−Cvt3), T̂ ∼ exp(−CT t3) (4.2)

where Cu, Cv and CT are positive real constants, related to the time-independent parts
of a22, a33 and a44, respectively. If we now substitute (4.2) into the continuity equation
in (3.8), we can determine the asymptotic variation of ν̂ after any suitably large time
tr to be

ν̂ ∼ ν̂(tr) +

∫ t

tr

t exp(−Cvt3) dt. (4.3)

Thus, ν̂ does not decay with time but is in fact always of the same order as the initial
disturbance. When (4.3) is substituted back into (4.1) to check for consistency, we find
that the assumed dominant balance is incorrect: a31ν̂ is asymptotically much greater
than a33v̂. Therefore, the above result of Schmid & Kytömaa for the asymptotic
variation of the disturbances is incorrect.

The proper dominant balance is in fact between the terms on the right-hand side
of each of the last three equations in (3.8); for example, the dominant balance for the
x-momentum equation in (3.8) is

a21ν̂ + a22û+ a23v̂ + a24T̂ ∼ 0.

These can be rearranged to yield expressions for û, v̂ and T̂ in terms of ν̂, which may
then be substituted into the continuity equation to solve for ν̂. The result then is

ν̂(t) ∼ exp(−Ct), û(t) ∼ (1/t) exp(−Ct),
v̂(t) ∼ (1/t) exp(−Ct), T̂ (t) ∼ exp(−Ct),

}
(4.4)

where

C = ν0

(
f0

1ν − f0
1(f0

4h/f
0
4)
)
T 0 + σ0

cν(
f0

3 + 4
3
f0

2

)
T 01/2

+ σ0
c

(
sinφ+

n− 1

n sinφ

) > 0.

Here and elsewhere in this paper, f0
i refers to the functions fi (table 1) evaluated

at ν0. This solution may be substituted back into (3.8) to verify that the dominant
balance we had chosen is indeed consistent.

Since the above asymptotic analysis shows that every Fourier component of an
initial disturbance decays as t→∞, an arbitrary disturbance will decay asymptotically.
Therefore, unbounded granular shear flow is stable to infinitesimal disturbances when
kx 6= 0 for the kinetic and frictional–kinetic models.

However, the above analysis is not valid for disturbances in the form of layering
modes (kx = 0, ky 6= 0) because the adopted dominant balance is no longer correct
(the time-dependent coefficients vanish). Wang et al. (1996) demonstrated clearly that
the flow may become unstable to layering modes for the purely kinetic model. In the
following section, the effect of friction on the asymptotic stability of layering modes
is assessed.
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4.1. Layering modes (kx = 0, ky 6= 0)

When kx is set to zero, the time-dependent part of the linear operator vanishes,
leading to a constant matrix A0(kx = 0). For this particular case the wave vector
k(t) is perpendicular to the x-axis, corresponding to disturbances that do not vary
in the streamwise direction. To determine linear stability, we calculate the spectrum
of A0, whose real part is the growth rate and the imaginary part is the frequency
of the disturbance. The least-stable eigenvalue ωl is the one with largest real part.
If ωl

r , the real part of the least-stable eigenvalue, is positive, then the infinitesimal
disturbance will grow exponentially with time leading to instability. A negative ωl

r

implies that the disturbance decays exponentially. There is a least-stable eigenvalue
for every point in the (ν0, ky0)-plane. The flow is stable to all disturbances if ωl

r is not
positive for all ky0, and unstable otherwise. If the maximum of ωl

r over ky0 is zero, the
flow is said to be neutrally stable. The only material parameter for the kinetic model
is ep, while there is an additional parameter Fr for the frictional–kinetic model. Other
frictional parameters are fixed and are listed in table 2; sensitivity of our results to
these parameters is discussed in § 6.

At this point, we pause to consider the dependence of the growth (or decay) rates
of disturbances on the shear rate. The dimensionless eigenvalues ω are scaled with
the shear rate. The results for the kinetic model are valid for all shear rates, since
there is no parametric dependence of the dimensionless linearized equations on the
shear rate. Hence the dimensional growth (or decay) rate for any shear rate may
be obtained by multiplying ω by the shear rate. However, stability results for the
frictional–kinetic model depend on the parameter Fr and therefore, for a material
with given frictional parameters, on the shear rate. These points must be borne in
mind while comparing stability results of the kinetic and frictional–kinetic models.
Comparisons are straightforward if the shear rate is thought to be equal in the two
cases.

Before discussing the results for layering modes, we look at the trivial case of
spatially uniform disturbances. For this case, kx = ky = 0 and the dispersion relation
can readily be obtained. Out of four eigenvalues, three are identically zero and the

fourth is negative with a magnitude of 2f0
5T

01/2
/3ν0. Therefore unbounded granular

shear flow is neutrally stable to spatially uniform disturbances. Note that this result is
unaffected by the inclusion of friction. The importance of uniform disturbances will
be considered in connection with transient behaviour in § 5.2.

4.1.1. Purely frictional stress

It is illuminating to consider the case of a purely frictional stress. The equation set
now consists of the continuity and two momentum balances with Σk = 0; there is no
fluctuational energy balance. For this case, the dispersion relation simplifies to

ω(ω2 + c
f
1ω + c

f
0) = 0,

with

c
f
1 =

1

ν0

(
τ0 − 1

τ0
σσ

)
k2
y0 =

σ0
c

ν0

(
sinφ+

n− 1

n sinφ

)
k2
y0 > 0,

c
f
0 = −

(
τ0
σν

τ0
σσ

)
k2
y0 = σ0

cν k
2
y0 > 0.



278 M. Alam and P. R. Nott

(a)

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

ky0

0

0.004

0.002

0.0005

(b)

0.1 0.2 0.3 0.4 0.5
0

0.1

0.4

0.5

0

0.002

0.001

0.0001

0.3

0.2

(c)

0.1 0.2 0.3 0.4 0.5
0

0.05

0.10

0.25

ky0

0

0.001

0.0005

0.0001

(d)

0.1 0.2 0.3 0.4 0.5
0

0.01

0.04

0.05

0

0.00012

0.00005

0.00001

0.03

0.02
0.15

0.20

m0 m0

Figure 2. Contours of ωl
r , the real part of the least-stable eigenvalue, for layering modes (kx0 = 0)

in the (ν0, ky0)-plane for the purely kinetic model, with the coefficient of restitution ep set to (a) 0.40,
(b) 0.60, (c) 0.80 and (d ) 0.99.

The roots of the dispersion relation are

ω(1,2) = 1
2
c
f
1

(
−1±

(
1− 4cf0/c

f
1

2
)1/2

)
,

ω(3) = 0.

Since both cf0 and cf1 are positive, the non-zero roots (ω(1) and ω(2)) are either a pair
of complex conjugates with negative real parts or purely real and negative, depending

on whether the ratio 4cf0/c
f
1

2
is greater or less than unity, respectively. This makes

ω(3) the least-stable eigenvalue, and hence unbounded shear flow is neutrally stable
to disturbances in the form of layering modes for the purely frictional model.

4.1.2. Kinetic and frictional–kinetic models

The eigenvalues of the matrix A0(kx = 0) were determined using the MATLAB
software package on an IBM RS-6000 workstation. Figure 2 shows contours of ωl

r

in the (ν0, ky0)-plane for four different values of ep, for the case of a purely kinetic
stress. Inside the ωl

r = 0 contour (other than at ky0 = 0), the flow is unstable to
infinitesimal disturbances. At a given solids fraction, the range of unstable transverse
wavenumber (ky0) as well as the asymptotic growth rate of the least-stable mode
decrease as the coefficient of restitution approaches unity, demonstrating the inelastic
nature of the instability. The maximum growth rate, indicated by a circle in each
plot, seems to occur at a solids fraction of roughly 0.40, and this particular feature
does not appear to depend on ep. Note that the flow is stable in the dilute limit
(ν0 < 0.15) irrespective of the value of ep. In this regard, we note that Wang et al.
(1996) observed that unbounded granular shear flow in the dilute limit is linearly
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Figure 3. Contours of ωl
r for layering modes for the frictional-kinetic model with ep = 0.5. (a) Purely

kinetic model; (b–d ) frictional–kinetic model with the friction coefficient Fr set to (b) 3.8 × 10−5,
(c) 9.5×10−4 and (d ) 1.52×10−2. The solid and dotted lines represent unstable and stable contours,
respectively.

unstable to three-dimensional disturbances with kx0 = 0; however for ν0 > 0.25 the
dominant mode was again found to be two-dimensional.

The growth rate contours of the least-stable mode for the frictional–kinetic case
are shown in figure 3 for three different values of the friction coefficient, with ep
fixed at 0.50. The effect of friction is felt only when the solids fraction exceeds 0.5, in
accordance with the functional form for σc in (2.12). The dotted contours represent
decay rates in the stable region. At this value of ep, inclusion of friction tends to
stabilize the flow; at Fr = 1.52× 10−2, the flow becomes stable for all ν0 greater than
0.503.

Friction can have the opposite effect on stability if we increase the value of the
coefficient of restitution. To illustrate this, the growth rate contours of the least-stable
mode are shown in figure 4 for ep = 0.80. We observe that in the limit of low friction
there is very little change in the neutral stability curve, except at densities near
maximum packing. As the friction coefficient is increased, we observe an extended
region of instability in the (ky0 , ν

0)-plane. Note that the maximum growth rate is
much larger than that in the purely kinetic case.

To further illustrate the effects of the coefficient of restitution and friction on
stability, we have shown in figure 5 the variation of ωl

r with ep for the purely kinetic
and frictional–kinetic models at ν0 = 0.55 and ky0 = 0.10. For the purely kinetic
model, the flow is unstable for all values of ep less than 0.88, and stable beyond that.
However, inclusion of friction has the curious effect of stabilizing the flow when ep
is low and enhancing the instability (by increasing the growth rate) when ep is high.
This trend is shown clearly by the dashed line representing Fr = 9.5×10−4, for which
the flow is stable for ep less than 0.76 and unstable when ep is between 0.76 and 0.965.
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Figure 4. Contours of ωl
r for layering modes for the frictional–kinetic model with ep = 0.80. Other

parameters for (a–d ) are as in figure 3.
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Figure 5. Variation of ωl
r with ep for the layering mode kx0 = 0, ky0 = 0.10, for different values of

the friction coefficient Fr at a density of ν0 = 0.55.

A further increase in Fr to 1.52× 10−2 makes the flow more unstable (in the unstable
range of ep) in that the growth rate increases by an order of magnitude.

Figure 6(a) traces the location of the four eigenvalues in the complex plane as
the coefficient of restitution is varied from 0 to 0.99. Other parameters remain as
in the dashed curve of figure 5. There is a pair of complex-conjugate eigenvalues
(branches 1 and 2) and two real eigenvalues (branches 3 and 4). The letters A
denote the location of eigenvalues at ep = 0 and the letters B give their location
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Figure 6. The location of the eigenvalues in the complex plane as the coefficient of restitution (ep)
is varied from 0 to 0.99 for the layering mode kx0 = 0, ky0 = 0.10. Parameter values are ν0 = 0.55
and Fr = 9.5 × 10−4. The arrows indicate the direction of increasing ep. (b) An expanded view of
branch 3.

at ep = 0.99. The arrows indicate the path of eigenvalues as ep increases. Branch 3
(see figure 6b for an expanded view) is always the least-stable eigenvalue. At this
value of the friction coefficient (9.5 × 10−4), branch 3 starts from the (stable) left
half-plane and penetrates into the (unstable) right half, reaches a maximum positive
value and then returns to the stable half-plane, moving towards point B. For the
purely kinetic model, branch 3 originates in the right half-plane and then follows the
same trend. Looking at the frequency of the least-stable mode (imaginary part of
the eigenvalue), we find that they are non-oscillatory waves; this is also true for the
kinetic model.

The variation of the least-stable eigenvalue with the transverse wavenumber ky0 is
shown in figure 7. Here the solids fraction is 0.55 and the value of ep is 0.80. The growth
rate corresponding to a friction coefficient of 3.8× 10−5 is indistinguishable from the
dot-dash line, which represents the purely kinetic case. We observe that the asymptotic
growth rate increases with ky0, reaching a maximum positive value at some value of
ky0, beyond which it decreases monotonically and ultimately becomes negative. The
range of transverse wavenumber for which the flow is unstable increases as the
friction coefficient increases. We recall that a high friction coefficient corresponds to
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Figure 7. Variation of ωl
r with ky0 for layering modes, for different values of Fr. Parameter values

are ν0 = 0.55 and ep = 0.80.

low shear rate and vice versa. Thus, it appears that friction has negligible effect on
the asymptotic growth of infinitesimal disturbances in the rapid flow regime whereas
a considerable increase in asymptotic growth rate is possible at low shear rates when
ep = 0.80. However, decreasing the value of the coefficient of restitution to 0.5 has
the opposite effect on asymptotic growth rate, as can be discerned from figure 3.

Looking at the dependence of the disturbance components on the friction coefficient
(details in Alam 1997), we find that fluctuations in the solids fraction are considerably
diminished as the friction coefficient is increased. Friction has negligible effect on
the streamwise velocity and temperature perturbations, but it affects the transverse
velocity mode substantially. We also find that it is the streamwise velocity component
which dominates the disturbance structure of the least-stable eigenvectors in the
friction-dominated regime.

4.1.3. Analytical solution for neutral stability

The dispersion relation for the frictional–kinetic model can be written as

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (4.5)

where the coefficients a3, a2, a1 and a0 are given in Appendix B. On the neutral
stability contour ωr = 0, the dispersion relation (4.5) becomes(

ωi
4 − a2ωi

2 + a0

)
− i
(
a3ωi

2 − a1

)
ωi = 0.

From the imaginary part of the above equation, we obtain

ωi = 0 or ωi
2 = a1/a3. (4.6)

With ωi = 0 (non-oscillatory modes) the dispersion relation simplifies to

a0 = 0, (4.7)

and with ωi
2 = a1/a3 (oscillatory modes) the dispersion relation is

a2
1 − a1a2a3 + a0a

2
3 = 0. (4.8)
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Equation (4.8) may be simplified to yield a quartic equation in k2
y0, the final form of

which is too cumbersome to reproduce here. For all possible parameter combinations,
we find that the roots of (4.8) are complex values for ky0 which are clearly inadmissible.
So we are left with ωi = 0, i.e. the neutral modes with ωr = 0 also have ωi = 0. This
implies that the principle of exchange of stabilities (Drazin & Reid 1981, p. 12) holds
for layering modes. Therefore to trace the locus of neutral stability, it is sufficient
to take ω ≡ 0. After algebraic rearrangement, we get the following equation for the
locus of neutral stability:

k2
y0 = f0

5

(
N1 +N2− 2

N3

)
(4.9)

where

N1 =

(
h1 + τ0

cν

f0
2T

01/2

)
f0

1T
0

h2

> 0, N2 =
f0

5ν

f0
5

f0
1T

0

h2

> 0, N3 =

(
f0

4 −
f0

1T
0

h2

f0
4h

)
> 0.

The coefficients h1 and h2 in the above expressions are given in Appendix B. If ep
is fixed, we have instability if (4.9) admits a real solution for ky0 at a given value
of ν0. This allows us to trace the neutral stability contour in the (ν0, ky0)-plane. The
nature of this instability can be understood if we consider the limit ep → 1. Since
f0

5 → 0 and T 0 → ∞ as ep → 1, it follows from (4.9) that ky0 → 0, i.e. there is no
range of ky0 for which the flow is unstable in the elastic limit regardless of the value
of the friction coefficient. Therefore, layering instability is driven by the inelasticity
of collisions between particles. This result was shown earlier by Babić (1993) for the
purely kinetic case; it remains unaltered by the addition of friction.

In figure 2 it is clear that the flow is stable in the dilute limit (ν0 → 0). In this limit,
g(ν)→ 1 and the non-dimensional functions f1–f5 vary as

f1 ∼ ν, f3 ∼ ν2, f5 ∼ ν2,

and f2, f4 and f4h tend to constants. It then follows that N1→ 0 and N2→ 2 in this
limit. Equation (4.9) then implies that ky0 → 0, which means that there is no unstable
layering mode in the dilute limit. The critical value of the solids fraction (ν0

c ) below
which the flow is stable can be easily obtained by equating the right-hand side of (4.9)
to zero. For example, ν0

c = 0.156 at ep = 0.99 and ν0
c = 0.165 at ep = 0.50. The result

that ν0
c is not sensitive to ep follows from the fact that f1–f4 are weak functions of ep.

We recall from § 4.1.2 that inclusion of friction has the curious effect of stabilizing
or destabilizing the flow depending on the value of the coefficient of restitution (see
figures 3 and 4). This feature can be explained if we consider the behaviour of (4.9) in
the regime where the frictional stress dominates. In this regime, h1 ≈ τ0

ν and h2 ≈ σ0
cν

(see Appendix B) and it thus follows that

N1 ≈ 2
f0

1

f0
2

sinφT 01/2 ∼ 1

(1− e2
p)

1/2
and N2 ≈ f0

5ν

f0
5

f0
1T

0

σ0
cν

∼ 1

(1− e2
p)σ

0
cν

.

The behaviour of N1 is dictated solely by ep while that of N2 is dictated by both Fr
and ep; note also that N2 tends to zero when σ0

cν becomes large. Thus the right-hand
side of (4.9) is positive if ep is large (close to unity), i.e. the flow is unstable. If we
decrease the value of ep, both N1 and N2 decrease, and we get a threshold for ep (say
ecp) at which the right-hand side of (4.9) is identically zero. For ep < ecp, (N1+N2) < 2,
(4.9) does not admit a real solution for ky0 and hence the flow is stable. Thus the
strong dependence of N1 and N2 on ep is responsible for the observed dual effect
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of friction in the frictional–kinetic model. This is in variance with the purely kinetic
model for which N1 and N2 are weak functions of ep, for the reasons mentioned in
the preceding paragraph.

5. Transient behaviour
Thus far we have presented the results for asymptotic stability of unbounded shear

flow by considering the spectra of the associated linear operator. For normal operators,
the transient behaviour of perturbations is determined solely by the spectra; if all the
eigenvalues have negative real parts, then any perturbation will decay monotonically
with time. However, if the linear operator is non-normal, transient growth of the
disturbance is possible, even if all the individual eigenmodes decay asymptotically.
This transient growth is associated with the non-orthogonality of the eigenvectors of
the governing linear operator (Reddy, Schmid & Henningson 1993). While transient
growth does not imply instability, it does indicate the potential of the flow to
amplify disturbances in short time scales. If this transient amplification is substantial,
nonlinear effects may take over and ultimately lead to transition to another state.
The importance of transient growth for a variety of fluid flows governed by the
Orr–Sommerfeld operator has been discussed in recent publications (Butler & Farrell
1992; Reddy & Henningson 1993; Trefethen et al. 1993). Here we report the transient
behaviour of unbounded shear flow taking into account the frictional stress, following
the method of Schmid & Kytömaa. We consider layering and non-layering modes
separately in § 5.1 and § 5.2, respectively.

5.1. Layering modes (kx = 0, ky 6= 0)

Following Schmid & Kytömaa (1994), we introduce the supremum of the norm of
the solution vector over all possible initial disturbances of unit norm as a measure of
the size of the disturbances,

G(t) ≡ G(t, kx0, ky0, ν
0, ep, Fr) = sup

X 0 6=0

‖X‖
‖X 0‖

= sup
X 0 6=0

‖ exp(tA0)X 0‖
‖X 0‖

= ‖ exp(tA0)‖.

In other words, the growth function G(t) is the largest possible amplification at
time t over all initial disturbances of unit norm. We consider disturbance measures
in 2-norm, which can be easily calculated using singular value decomposition in
MATLAB. Most of the results on transient growth are presented for a fixed value of
the coefficient of restitution, ep = 0.80.

Figure 8(a) shows the evolution of the growth function G(t) with time, when
ν0 = 0.55, ky0 = 0.30 and ep = 0.80. The dashed line represents results for the purely
kinetic model and the solid line for the frictional–kinetic model at a friction coefficient
Fr of 1.52 × 10−2. The flow is asymptotically stable at these conditions. We observe
considerable transient growth of disturbances for both cases, though they decay
asymptotically. The effect of ep on transient growth can be inferred by comparing
figures 8(a) and 8(b); in the latter, we show the evolution of G(t) at ep = 0.50, other
parameters remaining unchanged. We find that a reduction in ep marginally reduces
Gmax, the temporal maximum of G(t), for the purely kinetic model and marginally
increases Gmax for the frictional–kinetic model. The main difference between the two
cases is that G(t) decays at a much faster rate when ep is reduced to 0.50, for the
frictional–kinetic model.

Also of interest is the structure of the disturbances which constitute the maximum
transient growth and the effect of friction on it in the frictional regime. To illustrate
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Figure 8. Temporal evolution of the growth function G(t) for the layering mode kx0 = 0, ky0 = 0.30
for the purely kinetic and frictional–kinetic models. Parameter values are ν0 = 0.55 and (a) ep = 0.80,
(b) ep = 0.50.

Disturbance Frictional–kinetic model Kinetic model

components Optimal mode Eigenvector Optimal mode Eigenvector

ν̂ 1.370× 10−2 1.092× 10−2 5.099× 10−2 3.906× 10−2

iû −6.000× 10−1 −9.673× 10−1 −6.767× 10−1 −9.653× 10−1

iv̂ 7.458× 10−1 1.077× 10−3 6.529× 10−1 7.805× 10−3

T̂ −2.889× 10−1 −2.532× 10−1 −3.364× 10−1 −2.581× 10−1

Table 3. Structure of optimal disturbances (figure 8a)

this, we have computed the components of the optimal disturbance that will result
in the maximum transient growth shown in figure 8(a), and the results are tabulated
in table 3; for reference, we have also listed the least-stable eigenvector. We observe
that for both models the optimal disturbance consists mostly of û- and v̂-waves
of comparable magnitudes. It is also noteworthy that the optimal mode differs
considerably from the eigenvector of the least-stable mode.

The curves in figure 8 are typical of transient growth of perturbations that are
asymptotically stable, in that the growth function increases initially, reaches a maxi-
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Figure 9. Contours of maximum transient growth Gmax in the (ν0, ky0)-plane for layering modes with
ep = 0.80. The hatched region represents unstable modes (infinite Gmax). (a) Purely kinetic model;
(b–d ) frictional-kinetic model with (b) Fr = 3.8×10−5, (c) Fr = 9.5×10−4 and (d ) Fr = 1.52×10−2.

mum value and then decays asymptotically in the large time limit. Hence, the initial
growth rate is an indicator of the importance of transient growth. Following Schmid
& Kytömaa, we define the quantity

Ωi =
1

‖X‖2

d‖X‖2

dt
at t = 0 (5.1)

as the initial growth rate. Our results show substantial amplification of Ωi when the
friction coefficient Fr is increased, especially when the density is large (see Alam 1997
for details). At a given solids fraction, disturbances of small wavelengths experience
larger initial growth rates than those of large wavelengths.

Figure 9 displays contours of the maximum growth over all time, defined as

Gmax ≡ Gmax(kx0, ky0, ν
0, ep, Fr) = sup

t>0

G(t),

in the (ky0, ν
0)-plane. The hatched regions represent points that are asymptotically,

unstable, i.e. where infinite amplification is possible due to exponential growth. The
contours of Gmax are unaffected upon inclusion of frictional stress when the friction
coefficient is small, except when the solids fraction is high, as shown in figure 9(b).
At Fr = 1.52 × 10−2, one can achieve substantial amplification of the disturbance
norm throughout the (ky0, ν

0)-plane. It is interesting to observe that the value of Gmax
decreases as the transverse wavenumber increases. This is in contrast with our earlier
observation on initial growth rates; thus, short waves experience maximum initial
transient growth rate but long waves are favoured to achieve maximum transient
growth.
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5.2. Non-layering modes (kx 6= 0)

For non-layering modes, the solution of the vector differential equation (3.8) is
complicated by the time dependence of the linearized matrix A(t). The solution of
(3.8) can be expressed in terms of the fundamental matrix Y (t), which is defined such
that X (t) = Y (t)X (0). The fundamental matrix Y (t) satisfies the following matrix
differential equation

dY

dt
= A(t)Y , Y (0) = I , A,Y , I ∈ C4×4, (5.2)

where I is the identity matrix.
One can compute the solution of (5.2) by a recurrence technique as discussed

in Schmid & Kytömaa (1994), or by the multiplicative integral method as detailed
in Gantmacher (1960), or by direct numerical integration. The convergence of the
recurrence technique was found to be poor for low values of kx0, and consequently a
large number of terms had to be retained for convergence. The multiplicative integral
method was better suited for our purpose and we have outlined this technique briefly
in Appendix C.

As in the case of layering modes, we define a measure for the size of the disturbance
as

G(t) ≡ G(t, kx0, ky0, ν
0, ep, Fr) = sup

X 0 6=0

‖X‖
‖X 0‖

= sup
X 0 6=0

‖Y (t)X 0‖
‖X 0‖

= ‖Y (t)‖.

Again, we consider the 2-norm of the fundamental matrix to calculate the growth
function G(t).

In figure 10(a) we have displayed G(t) for three values of the friction coefficient Fr
at a streamwise wavenumber kx0 = 0.40; figure 10(b) represents the same at kx0 = 0.08.
The growth curve for the friction coefficient of 3.8 × 10−5 is indistinguishable from
that of the purely kinetic case, represented by the dotted line. Note that considerable
increase in transient growth is possible for the largest friction coefficient. We observe
the appearance of multiple peaks in the growth curve as we decrease the value of
the streamwise wavenumber (see figure 10b). It may be noted that for smaller kx0,
transient growth persists over a longer period and the maximum in G(t) now occurs
at the third peak. This particular feature of multiple peaks in the growth curve is
typical of non-layering modes at low kx0. It is interesting to note that transient growth
for the frictional–kinetic model decays faster, implying smaller time scales over which
fluctuations can occur.

Looking at the dependence of the initial growth rate Ωi (defined in (5.1)) on the
friction coefficient, we find that Ωi can increase substantially when frictional effects
are included. Contours of Ωi in the (kx0, ky0)-plane (see Alam 1997 for details) indicate
that disturbances with wave vector inclined at an angle of 45◦ with the streamwise
direction exhibit the smallest initial growth rate. This feature changes neither with Fr
nor with solids fraction, as in figure 7 of Schmid & Kytömaa (1994).

To continue further, we define the supremum of Gmax over all possible ky0 at a fixed
value of the streamwise wavenumber as the optimal growth:

Gopt ≡ Gopt(topt, kopty0 ) = sup
ky0

Gmax(kx0, ky0, ν
0, ep, Fr),

where topt is the time and k
opt
y0 is the transverse wavenumber at which this optimum

is achieved. The global optimal transient growth is defined as the supremum of Gopt

over all kx0.
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Figure 10. Temporal evolution of the growth function G(t) for non-layering modes for three
different values of Fr. Parameter values are set to ν0 = 0.55, ep = 0.80, ky0 = 0.30 and (a) kx0 = 0.40,
(b) kx0 = 0.08.

In figure 11(a), we show contours of the maximum growth, Gmax, as a function of
streamwise and transverse wavenumber for ν0 = 0.55, ep = 0.80 and Fr = 1.52×10−2;
for comparison, the corresponding contour levels for the purely kinetic case are
shown in figure 11(b). The streamwise wavenumber is varied from 0.01 to 0.2;
for larger kx0, Gmax decreases with kx0. It is clear that there can be significant
transient growth throughout the (kx0, ky0)-plane even if the flow is linearly stable. We
observe that as kx0 decreases, the optimal growth increases and the associated optimal
transverse wavenumber kopty0 may be positive or negative depending on the value of

kx0. Figure 11(a) shows that kopty0 is negative when kx0 is greater than 0.09, and positive
otherwise. Similar trends can be discerned from figure 11(b).

To get a better picture of the dependence of the optimal growth on low streamwise
wavenumber, we have shown the variation of Gmax with ky0 in figure 12 for two differ-
ent values of kx0 for the purely kinetic case. Other parameters are as in figure 11(b).
The trends for the frictional–kinetic model are similar. At kx0 = 0.01, the first peak
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Figure 11. Contours of maximum transient growth Gmax in the (kx0, ky0)-plane for non-layering
modes. (a) Frictional–kinetic model with Fr = 1.52× 10−2, (b) kinetic model. Other parameters are
as in figure 10.

near ky0 ≈ 0.06 is dominated by the peak near ky0 ≈ 0.3. As we decrease the value
of kx0 to 0.001, both the peaks are pushed to lower ky0 and, more importantly, the

optimal growth now occurs at the first peak near ky0 = 0.02. The shift of kopty0 towards

a lower value may be discerned from table 4 where we have listed Gopt, topt and k
opt
y0

for three different streamwise wavenumbers. The values of ν0 and ep are the same
as in figure 11. It is clear that the optimal growth is likely to occur at arbitrarily
small values of kx0 for both the models. Note also that the location of Gopt appears
to be attracted towards kx0 = ky0 = 0. This particular feature can be explained if we
consider the evolution of disturbances which do not depend on space.

For spatially uniform disturbances (kx = ky = 0), the following linear evolution
equations govern the behaviour of (not necessarily infinitesimal) disturbances:

dν ′/dt = 0, (5.3)

du′/dt+ u0
y v
′ = 0, (5.4)
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Figure 12. Variation of maximum transient growth Gmax with the transverse wavenumber ky0 for
the kinetic model. The solid and dashed lines represent streamwise wavenumbers of 0.001 and 0.01
respectively. The solids fraction ν0 is 0.55 and the coefficient of restitution ep is 0.80.

Frictional–kinetic model Kinetic model
(Fr = 1.52× 10−2)

kx0 Gopt topt k
opt
y0 Gopt topt k

opt
y0

0.05 1.511× 102 1.105× 101 4.87× 10−1 5.110× 101 1.062× 101 4.35× 10−1

0.01 5.787× 102 4.020× 101 3.60× 10−1 1.376× 102 3.642× 101 3.05× 10−1

0.001 4.142× 103 2.894× 102 2.73× 10−1 4.491× 102 2.704× 101 2.00× 10−2

Table 4. Variation of Gopt, topt and kopty0 with streamwise wavenumber

dv′/dt = 0, (5.5)

dT ′/dt+ β2T
′ − β1ν

′ = 0, (5.6)

where

β1 =
2

3ν0

(
f0

2ν − f0
5νT

0
)
T 01/2

and β2 =
2

3ν0
f0

5T
01/2

> 0.

The above set of equations can be immediately integrated to give

ν ′(t) = ν ′(0), (5.7)

u′(t) = u′(0)− v′(0) u0
y t, (5.8)

v′(t) = v′(0), (5.9)

T ′(t) = T ′(0)e−β2t + ν ′(0)
(
1− e−β2t

)
β1/β2. (5.10)

For non-zero v′(0) and u0
y , the streamwise velocity disturbance increases linearly with

time. This is an algebraic instability, a term coined by Landhal (1980) in connection
with the stability of inviscid parallel shear flows. Note that this result holds for any
parallel shear flow, irrespective of whether it is a granular or Newtonian fluid. The



The stability of unbounded granular shear flow 291

Frictional–kinetic model Kinetic model
(Fr = 1.52× 10−2)

Disturbance Optimal mode Optimal mode Optimal mode Optimal mode
components at t = 0 at t = topt at t = 0 at t = topt

ν̂ 9.980× 10−1 −7.058× 10−3 9.975× 10−1 −1.025× 10−2

iû −5.527× 10−2 8.722× 10−1 −6.285× 10−2 9.304× 10−1

iv̂ −2.489× 10−2 −4.842× 10−1 −2.728× 10−2 −3.560× 10−1

T̂ −1.408× 10−2 −6.834× 10−2 −1.341× 10−2 −8.631× 10−2

Table 5. Optimal initial disturbance and its subsequent evolution

behaviour of the disturbance norm at large time is hence

G(t) ∼ v′(0) u0
y t→∞ as t→∞, (5.11)

i.e. the 2-norm of a spatially uniform disturbance with v′(0) 6= 0 will grow linearly
with time. Therefore the global optimal growth (supremum of Gmax over kx0 and ky0)
will occur at (kx0 = 0, ky0 = 0).

In view of above findings, a discussion of the results of Schmid & Kytömaa (1994)
regarding the largest transient growth is in order. They showed that the largest linear
growth (global optimum) occurs for very small values of kx0 and at a transverse
wavenumber of ky0 ≈ 0.3. However a closer look at their figure 10 reveals that
they terminated their computations at about kx0 ≈ 0.05. A further decrease in kx0

would have revealed the correct picture regarding the location of the global optimal
transient growth, which should be attracted towards kx0 = ky0 = 0. For instance our
computation for the parameter set of their figure 10(a) gives an optimal growth of
roughly 70 at kx0 = 0.01 with the associated transverse wavenumber kopty0 ≈ 0.125.

We turn now to determine the evolution of the structure of disturbances in time.
For this, we focus on the disturbances that achieve the largest amplification in time
for given parameter combinations. The initial condition that results in the optimal
growth at kx0 = 0.01 and ν0 = 0.55 are shown in table 5 for both the models along
with the disturbance components at optimal growth. It is clear that the structure
of the initial ‘optimal’ mode is dominated by the disturbance in solids fraction for
both the models; at t = topt, however, it is the streamwise velocity which dominates
the structure of the disturbance. To determine which flow variable is most amplified,
one has to multiply the ratio of the respective disturbance components at t = topt

and t = 0 by Gopt. For example, at t = topt the disturbance in solids fraction will
be amplified by a factor of approximately 4.1 and 1.4 for the frictional–kinetic and
kinetic models, respectively.

Figures 13(a) and 13(b) show the initial and optimal solids fraction distribution
corresponding to the optimal mode for the frictional–kinetic model given in table
5. On the grey scale, black represents maximum density and white minimum; the
contours are drawn at equal intervals of solids fraction. The initial wavenumber
combination (0.01, 0.36) corresponds to a wavelength of 17.4 particle diameters, with
the wavefronts inclined at an angle of 178.4◦ from the x-axis. To show this band
structure clearly we have used a box of aspect ratio 10 and hence this figure does
not show the true inclination angle of the bands, which are actually almost parallel
to the x-axis. It is clear that the wavefronts are initially aligned ‘against’ the shear.
Subsequent evolution of the solids fraction field at t = topt is shown in figure 13(b).
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Figure 13. The solids fraction disturbance field for the optimal disturbance kx0 = 0.01, ky0 = 0.360
at (a) t = 0 and (b) t = topt. Parameter values are ν0 = 0.55, ep = 0.80 and Fr = 1.52× 10−2. On the
grey scale, black represents maximum density and white minimum.

Owing to the continual rotation of the wave vector, the transverse wavenumber
becomes negative at this time. Consequently the alternating bands of clusters are
now turned ‘into’ the shear and are inclined at an angle 13.5◦ to the x-axis, and the
wavelength now is 145 particle diameters. At later times, these clusters experience
stretching in the streamwise direction and this eventually leads to homogeneous layers
almost parallel to the flow direction. The optimal disturbance field of solids fraction
for the kinetic model at the same parameter values was found to be similar.

6. Discussion
The linear stability of unbounded granular shear flow was considered, using a

model for the stress that integrates effects of stress generation due to grain friction
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with the kinetic stress that arises from streaming and collisions of grains. Solutions of
the linearized equations were sought in the form of Kelvin modes, whose wave vector
continually rotates with time. The magnitude of the frictional stress in comparison
with other forces is determined by the parameter Fr, which varies as the inverse of
the square of the shear rate. Thus, the frictional stress will dominate at low shear rate
and the kinetic stress at high shear rate. If a purely frictional stress is assumed, the
flow is neutrally stable. When the kinetic stress is also accounted for, the flow may
become unstable to disturbances that have no variation in the streamwise direction,
i.e. layering modes.

Given that unbounded shear flow of a granular material can become unstable to
disturbances of the layering kind, it is clearly of interest to identify the factors in
the model that cause instability and those that resist it. An important factor can be
readily identified by considering the dependence of k2

y0 on ep in (4.9). Apart from its

weak dependence on ep through the functions f1–f4, k
2
y0 varies as (1− e2

p) through f5.
This suggests that the fluctuational energy balance has an important role to play in
causing instability, as f5 determines the inelastic dissipation rate. This is more clearly
illustrated if the linearized energy balance were to be deleted altogether from the
system of equations in (3.8) and the temperature perturbation T ′ set to zero. The
dispersion relation for layering modes in this case is a cubic in ω; two roots form a
complex-conjugate pair with a negative real part and the third is real and negative.
Thus the flow is never unstable if the energy balance is not considered.

Another important factor in whose absence there is no instability is the compress-
ibility of the material. This can be easily verified by keeping the density constant in
the governing equations and instead treating the pressure p as another variable. On
eliminating the streamwise velocity from the linearized equations by using the conti-
nuity equation, we get a system of three equations in place of (3.8) that determines
the evolution of the disturbance amplitudes v̂, p̂ and T̂ . In the same manner as in §4,
it can be shown that the leading-order asymptotic behaviour of these is

û(t) ∼ t exp(−Ct3), v̂(t) ∼ exp(−Ct3),
T̂ (t) ∼ exp(−Ct3), p̂(t) ∼ (1/t) exp(−Ct3),

}
(6.1)

where

C =
1

3ν0
f0

2T
01/2

k2
x0.

Therefore incompressible shear flow is stable to non-layering modes. (Indeed, distur-
bances decay even faster than in the compressible case.) For layering disturbances the
above asymptotic behaviour no longer holds and (as in the compressible case) stability
is determined by the eigenvalues of the constant matrix A0. In this case the linearized
momentum balances can be combined into a single balance for the vorticity. Along
with the linerized balance of fluctuational energy, this yields a quadratic dispersion
relation (see Appendix B). It can be easily checked that both roots have negative real
parts and hence the flow is also stable to layering modes in the incompressible limit.
It is then clear that compressibility is an essential factor for instability.

It thus appears that instability is caused by an imbalance between the production
of fluctuational energy by shear work and its dissipation by inelastic collisions
between grains. However, the imbalance never grows to become unstable unless
the compressibility of the granular material is accounted for. In this regard, it
is interesting to note that the function f4, which determines the pseudo-thermal
conductivity, appears only in denominator of (4.9) and not in the numerator. This
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implies that the pseudo-thermal conductivity plays no role in determining the onset
of instability. However, our computations indicate that it contributes to reducing the
asymptotic growth rate of disturbances, and is therefore a stabilizing influence.

While it is clear that instability can arise only from an imbalance in the energy
equation, it can be amplified or suppressed by the inclusion of the frictional stress,
which does not appear in the energy balance at all. This is due to the coupling between
the momentum and energy balances through the grain temperature T . As is clear
from our discussion in §4, increasing Fr stabilizes the flow at low ep and destabilizes
it at larger ep. However, this result is specific to the chosen value of the angle of
internal friction φ (cf. table 2). We demonstrate below that this is not necessarily the
case for all values of φ. A notable point is that unbounded shear flow in the limit
of perfectly elastic collisions (ep = 1) is stable regardless of the value of the friction
coefficient.

The angle of internal friction is an important frictional property and its influence
on stability is clearly of interest. This can be assessed easily if we first recast (4.9) into
the following form:

βk2
y0 = (f0

2νT
01/2

+ 2τ0
ν)f

0
1T

0 +
(
f0

5ν/f
0
5

)
f0

1f
0
2T

03/2 − 2(f0
1νT

0 + σ0
cν)f

0
2T

01/2
, (6.2)

where

β =

(
f0

4 −
f0

1T
0

(f0
1νT

0 + σ0
cν)
f0

4h

)
(f0

1νT
0 + σ0

cν)
f0

2T
01/2

f0
5

.

Note that all three terms on the right-hand side of (6.2) are monotonic increasing
functions of ν0. If the angle of internal friction φ is increased (keeping all other
parameters constant) the frictional shear stress τ increases and so does the first term
on the right-hand side of (6.2), while the other two remain unchanged. This implies
that in a scenario such as in figure 3 where the flow is stable for solids fractions
above a critical value, increasing the roughness of the material results in broadening
the range of ν0 for which unbounded shear is unstable. Our computations show in
general a rise in the growth rate of disturbances with increasing φ. This is clearly
shown in figure 14, where contours of the dominant eigenvalue, defined as

ωd = sup
ky0

ωl
r,

are given in the (ν0, φ)-plane with ep = 0.50 and other material properties (with
the exception of φ) given in table 2. These observations indicate that the material
roughness, characterized by the angle of internal friction φ, is a destabilizing influence
on unbounded shear flow.

Figure 14 also illustrates another interesting dichotomy: increasing the value of
Fr does not always stabilize the flow when ep = 0.5. When φ is large, increasing Fr
actually has a destabilizing effect. Below a critical value φc, which appears to be a very
weak function of ν0 and is roughly 43 ◦, increasing Fr has a stabilizing effect. This
qualitative picture also holds when ep is 0.8, as shown in figure 15, with the important
difference that φc is now much lower at roughly 27.5 ◦. For our computations in §4,
φ was set to 28.5 ◦, which is just above the critical value for ep = 0.8 and well below
that for ep = 0.5. Thus the effect of Fr on stability depends not just on ep but also on
φ. A good estimate of the critical value φc can be made by considering (6.2) in the
dense limit. If ep is not too close to unity, the kinetic stress is small in comparison
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Figure 14. Contours of ωd, the dominant eigenvalue, in the (ν0, φ)-plane for the frictional–kinetic
model with the friction coefficient Fr set to (a) 3.8× 10−5 and (b) 1.52× 10−2. Note that ωd is the
supremum over all ky0 of least-stable modes. The coefficient of restitution is set to 0.50.

with the frictional stress and hence at neutral stability,

sinφc = lim
ν→νmax

(f0
2f

0
5)1/2

f0
1

=

(
2(2 + α)

5π

(
π

3

(3η − 2)

(2− η)
+ 4

)
(1− η)

)1/2

. (6.3)

This gives φc = 27.54◦ at ep = 0.80 and φc = 43.6◦ at ep = 0.50. Another feature we
observe in figures 14 and 15 is that when the material roughness is small and the
density large, the flow is always stable.

The result that unbounded shear flow is asymptotically stable when disturbances
are in the form of non-layering modes does not imply that these disturbances decay
monotonically in time. There can be substantial transient growth of disturbances
because the associated linear operator is non-normal. Transient growth of disturbances
may be important as it is a possible route by which nonlinearities in the governing
equations become dominant and lead to finite-amplitude structures. This was shown
to be the case by Butler & Farrell (1994) for viscous shear flows, where they started
with an initial perturbation that was known to yield significant transient amplification
in the linear regime and showed its rapid evolution into quasi-steady finite-amplitude
structures. We have shown that friction has the effect of enhancing the initial growth
rate Ωi as well as the maximum transient growth Gmax, especially at high solids
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Figure 15. Same as figure 14 but with ep = 0.80.

fraction. Interestingly, friction also increases the rate of asymptotic decay for stable
flows; thus, disturbances grow faster initially and to levels higher than that in the
purely kinetic case, but they also decay faster subsequently. The maximum transient
growth for non-layering modes appears to occur for disturbances with wavenumbers
(kx, ky)→ 0.

At this juncture, it is important to note that the results on stability presented in
this work are not just valid for the specific forms of the constitutive models for the
kinetic and frictional stresses that we have employed and that there is some generality
in them. While there is uncertainty in some aspects of the critical-state model for the
frictional stress, such as the assumption of coaxiality and the use of an associated flow
rule, it is perhaps the most widely used model for quasi-static granular flow. If these
assumptions were to be relaxed, for example by eschewing the principle of coaxiality,
we believe that the stability results would not qualitatively differ. This is because the
two main aspects of the frictional stress that have determined stability are (a) that
it is rate independent and (b) that it does not enter the balance for fluctuational
energy. These aspects would remain even if the above changes in the model were
made. The components of the model that are susceptible to modification are the
functional forms for σc(ν) and τ(σ, ν) in (2.12) and (2.11), respectively. Modifications
of these will again leave the qualitative picture of stability unaltered because the
main features of the two functions that have influenced stability in this work, that
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σc diverges as ν → νmax and that the yield locus is convex, must remain unchanged
(Jackson 1986). Similarly, changes in the transport coefficients in the kinetic model
will not qualitatively alter the results as long as their low-ν limit remains unaltered
and they diverge as ν → νmax. These arguments are substantiated by the fact that we
could detect no appreciable changes in the stability results when we used the form
for σc(ν) given by Johnson & Jackson (1987),

σc(ν) =
Fr

(νmax − ν)40
(νmax > ν > 0), (6.4)

instead of (2.12), or the Carnahan–Starling radial distribution function at contact
used by Savage (1992b),

g(ν) =
2− ν

2(1− ν)3
, (6.5)

instead of (2.7). Details of these computations may be found in Alam (1997).
Our results indicate that the purely frictional quasi-static shear flow is neutrally

stable, although large transient amplification of disturbances can be expected. We
are unaware of microstructures reported in simulation studies of unbounded flow
that have accounted for friction in particle interactions, and hence no comparison
is possible. In practical instances of quasi-static flow, it is well known that shearing
is often restricted to thin layers while the rest of the material remains unyielded. In
these instances, however, one starts with the material at rest initially and not in a
state of uniform shear. Further, the density of the material may not be uniform owing
to gravitational compaction. The findings of this study are therefore not directly
applicable to these cases. In this regard, it would be a worthwhile effort to extend
the study of Wang et al. to bounded shear flow including the effects of friction
and gravity, complemented by dynamic simulations of the same. The differences
in stability between the purely frictional model and the frictional–kinetic model in
the limit Fr → ∞ (the former is neutrally stable while the latter may be unstable)
are due to the simple manner in which the two modes of stress generation were
combined. While the former does not require a balance for fluctuational energy, the
latter does. These results point to the necessity for a better model that combines the
two mechanisms of momentum transfer.

An important issue is the relationship between stability studies such as this and
computer simulations, such as that of Hopkins & Louge (1991). Babić (1993) recog-
nized that the use of periodic boundaries in the latter constrains the wavenumbers to
only a discrete set. He correctly pointed out that the wavenumbers in the streamwise
and transverse directions belong to the set 2πn1/Lx and 2πn2/Ly , respectively, if Lx
and Ly are the dimensions of the periodic domain, and n1 and n2 are any integers.
Babić also contended that n1 and n2 could not be zero, and the minimum wavenum-
bers were therefore 2π/Ly and 2π/Lx. This is incorrect, as the only constraint from
periodic boundaries is that the quantity kx(Lx + Lyt) + kyLy be an integral multiple
of 2π, including zero. This is indeed satisfied by kx = 0 and ky being an integral
multiple of 2π/Ly . Physically, this means that periodic boundaries allow structures
that have no variation in the streamwise direction, which is clearly obvious. Thus, it
appears that instabilities in the form of layering modes can indeed be picked up by
simulations with periodic boundaries.

The clusters observed by Hopkins & Louge (1991) are, however, not layered in the
streamwise direction but appear to be oriented along the principal deformation axis
and convected by the mean flow. This may be a result of transient amplification of
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disturbances, leading to nonlinear effects gaining importance and ultimately resulting
in the observed structures. It may also be the case, as suggested by Wang et al. (1996),
that the microstructure observed by Hopkins & Louge is fluctuations triggered by
random noise inherent in simulations and not true instabilities. This can perhaps be
verified by conducting the simulations for long periods of time and inferring the struc-
ture at various intervals, to see if it remains the same or is altered between intervals.
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Appendix A. Elements of Af(t) and Ak(t)
The non-zero elements of Af(t) are
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i
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τ0
σν

τ0
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and the non-zero elements of Ak(t) are

ak(1, 2) = −iν0kx, ak(1, 3) = −iν0ky,
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Note that the subscripts σ and ν indicate partial derivatives, and the superscript 0
denotes quantities evaluated at the base state.

Appendix B. Coefficients in the dispersion relation
The coefficients in the dispersion relation (4.5) are

a3 =
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The dispersion relation for the incompressible case is given by

ω2 + a1ω + a0 = 0, (B 10)

where
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Appendix C. Multiplicative integral method
We consider the following matrix differential equation:

dY

dt
= A(t)Y , Y (0) = I (C 1)

where A(t) is a continuous matrix function of the argument t in some arbitrary
(finite/infinite) interval (a, b).

The normalized solution of (C1), often called the matricant, can be represented in
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the form of an infinite series (Gantmacher 1960)

Y (t) = Πt
t0

= I +

∫ t

t0

A(χ)dχ+

∫ t

t0

A(χ)

∫ χ

t0

A(ξ)dξdχ+ · · · . (C 2)

It can be shown that the matricant converges absolutely and uniformly in every closed
interval in which A(t) is continuous. The matricant satisfies a well-known property:

Πt
t0

= Πt
t1
Πt1
t0
∀ (t0, t1, t) ∈ (a, b). (C 3)

To compute the matricant, we divide the time interval (t0, t) into m parts by
introducing points t1, t2, . . . , tm−1 and set ∆tk = tk − tk−1, k = 1, 2, . . . , m with tm = t. By
the property of the matricant (C3) we write

Πt
t0

= Πt
tm−1

. . .Πt2
t1
Πt1
t0
. (C 4)

Considering ∆tk as small quantities of first order we can compute Πtk
tk−1

to within an

error of O(∆t2k) as

Πtk
tk−1

= I +

∫ tk−1

tk

A(χ)dχ+ h.o.t. (C 5)

Combining (C4) and (C5) we obtain
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]
. (C 6)

By decreasing the size of the time interval ∆t the error can be brought down and thus
we obtain the exact limit formula:

Πt
t0

= lim
∆tk→0

[
I +

∫ t

tn−1

A(χ)dχ

]
. . .

[
I +
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This gives a representation of the matricant in the form of a multiplicative integral.
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